

Overview of Gridscale Rampable Intermittent Dispatchable Storage (GRIDS) Program

Mark Johnson

March 2, 2011

Power Grid: Large Supply Chain With No Warehouse

- Electrification: Premier
 Engineering
 Accomplishment
 of the 20th Century [NAE]
- Harnessing Renewable Power: #1 Challenge for 21st Century
- Limited Storage

Electric Energy Storage Applications

Storage Duration

Generation Related Attributes

Ancillary Services

Renewable Integration

Generator
Cycling Cost

Asset Capacity

Price Arbitrage Peak Shaving

Rate Optimization Reliability

Power Quality

Congestion Relief

Asset Utilization

T&D Upgrade Deferral

T&D Life Extension

T&D Related Attributes

Storage For Firming Renewables

*Problem:*Minutes-to-Hours Changes in Power

Need: Grid Storage that is Dispatchable and Rampable

ARPA-E: Energy Storage to Enable High Penetration of Renewables

High Renewable Generation Integration

- Larger Balancing Authority
- Increase Transmission Capacity
- Improved Situational Awareness
 - Real Time Knowledge
 - Improved Weather Models
 - Generation Protocols
- New Storage Technologies

Wind Generation and Balancing Storage in High Renewable Penetration Regions

System Challenge: Efficient Energy Storage at Minutes to Hours Duration to Firm Ramping Balance

Grid-scale Rampable Intermittent Dispatachable Storage (GRIDS) Metrics

Economics of Hydro / Deployable Anywhere

Technology Agnostic:
Chemical, Mechanical, Electromagnetic

Connect Across Industry for Handoffs

Focus: Transformational approaches to energy storage to enable low cost

New Technology Need: Cost-Effective Energy Storage Solutions

Portfolio of Projects

UNIVERSITY/ LAB

Rechargeable Fe-Air Battery

Advanced Flow Battery

SMALL BUSINESS

High Power Metal-air Storage

Neutral Water Fuel Cell

Long Duration Flywheel

Fuel-Free Isothermal Compression

CORPORATION

Advanced Flow Battery

Soluble Lead Flow Battery

2G-HTS SMES

Transformative Electrochemical Flow Storage System

Pratt & Whitney Rocketdyne, Inc.

A unique flow battery cell that provides 10X increase in power density

Novel cell design will reduce system cost by 2-4X

Jump-starts domestic effort in redox flow batteries, which had migrated out of North America

Cell power density comparison (W/cm²)

Rechargeable Iron-Air Battery

Cell Reaction:

Fe + H_2O + $\frac{1}{2}O_2 \Leftrightarrow Fe(OH)_2$

Anode: (discharge)

 $Fe + 2OH^- \Rightarrow Fe(OH)_2 + 2e^-$

<u>Cathode:</u> (discharge)

 $\frac{1}{2}O_2 + H_2O + 2e^- \Rightarrow 2OH^-$

< \$100/kWh & >5000 cycles high power, low cost, electrochemical storage

"Iron is Cheap, Air is Free"

Fuel-Free Isothermal Compressed Air Storage

Innovative Technology:
New Isothermal Compressor / Expander

Grid Storage Program Breakout

Spotlighters

Industrial Panel

Focused Networking

